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Abstract
We demonstrate how large classes of discrete and continuous statistical
distributions can be incorporated into coherent states, using the concept of
a reproducing kernel Hilbert space. Each family of coherent states is shown to
contain, in a sort of duality, which resembles an analogous duality in Bayesian
statistics, a discrete probability distribution and a discretely parametrized family
of continuous distributions. It turns out that nonlinear coherent states, of the
type widely studied in quantum optics, are a particularly useful class of coherent
states from this point of view, in that they contain many of the standard statistical
distributions. We also look at vector coherent states and multidimensional
coherent states as carriers of mixtures of probability distributions and joint
probability distributions.

PACS numbers: 04.20.Ex, 03.65.Ta

1. Introduction

In a series of recent papers, [17–19], an intimate connection between certain families of
coherent states and statistical distributions has been demonstrated and studied. The coherent
states discussed in these papers all have group theoretical origins and the Haar measure on the
group has then been shown to induce a prior measure on the statistical parameters entering the
definition of the discrete distributions. In this paper we look at a broader class of coherent states,
which do not necessarily have their origins in group representations. In particular we show
how, under certain technical restrictions, we can start with a discrete probability distribution,
depending on a single real parameter, and associate coherent states to it. In the process we
obtain a natural family of discretely indexed continuous distributions, which are then in a
sort of duality with the original discrete distribution, via the coherent states. This duality is
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highly reminiscent of a similar duality observed in the theory of Bayesian statistics, since the
resolution of the identity condition, which we impose on the coherent states, introduces
a preferred prior measure on the parameter space of the discrete distribution, with this
distribution itself playing the role of the likelihood function. The associated discretely indexed
continuous distributions become the related conditional posterior distributions. Alternatively,
one can also start with a discretely parametrized family of continuous distributions, and under
a certain convergence assumption, once more build coherent states. These coherent states then
again give rise to a dual discrete distribution or likelihood function. We illustrate the theory
by looking at a few examples of well-known statistical distributions (additional examples may
be found in [12]). Although most of these examples have been studied earlier, in the context
of Glauber–Klauder–Sudarshan or Gilmore–Perelomov coherent states [17–19], we analyze
them here from the present perspective, i.e., without invoking any group property.

We take the discussion further by studying the relevance of vector coherent states
and multidimensional coherent states when mixtures of probability distributions or joint
distributions are considered. As far as we are aware, this is the first time that such vector
coherent states have been studied in connection with statistical distributions.

It ought to be pointed out here that the classical Bayes theorem has been extended and
used in the context of quantum probability before (see, for example, [26] and references
cited therein) but these were in the context of quantum-conditional expectations, as related
to quantum measurement theory. What we point out here is the appearance of classical
probability distributions, in a form dictated by the classical Bayesian theorem, but related to
certain quantum state vectors.

2. Experimental model context

In the following paragraphs, using simple experimental setups, we try to motivate the
simultaneous appearance of a family of discrete probability distributions and a family of
continuous distributions in the sort of duality referred to earlier. First we describe the classical
inference procedure known as Bayesian inference in the experimental context indicated below.
Then, as indicated above, we will consider a relationship between our subsequent mathematical
analysis and this classical procedure (see the appendix).

2.1. Discrete case

Suppose we have an experimental setup for which we have an ‘experimental model’ in the
form of a family of discrete probability distributions n �→ P(n, λ) relating to a discrete set of
possible experimental outcomes. That is, we do not know the preparation exactly, only to the
extent of a family of states, indexed, say by the parameter λ which takes (continuous) values
in some parameter space. The parameter usually represents a quantitative property of interest.
In fact, the whole idea of the experiment, presumably, is to obtain data with which to estimate
this physical property represented by the parameter. As an elementary example, let us think in
terms of setting up an experiment to toss a coin N times and count the total number, k, of heads.
Now perform the experiment and designate the observed value of k as kobs. Then use kobs to
estimate the bias of the coin. The statistical model would be a family of binomial distributions
indexed by a parameter p with ‘true’ but unknown parameter value p0. One can estimate
the value of p0 as pest = kobs/N . But conditionally upon the observed value, kobs, one may
consider p as a random variable and construct a certain conditional probability distribution
over the parameter space which we now treat as a measurable space. The motivation for this
inference procedure is that, for example, one could then find subsets of the parameter space
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for which one could make statements such as ‘given the result of the experiment, there is a
99% chance that the true value p0 lies within that subset’. (Think of an experiment where one
tossed a coin 1000 times and got 999 heads.)

In [23, 30], the classical Bayesian method of inference is used in a quantum probability
context in a form similar to the present paper, in that there appears both a predictive stochastic
model in which the preparation is not fully determined and an inferred retrodictive probability
distribution on the parameter space which indexes a family of possible preparation states.
Here, we focus upon this duality of conditional probability distributions (one discrete and
the other continuous), which may be obtained not only by the classically originated Bayesian
method but by a consequent duality of two families of quantum probability distributions,
constructed via the use of coherent states. The extension of the classical Bayesian method
to quantum probability has been developed for use in other related quantum contexts as, for
example, in [9, 26, 32].

2.2. The duality

In the Bayesian context, both the quantity to be observed and the unknown parameter are
considered to be random quantities, playing a dual role. We consider two conditional
probability distributions. Before performing the random experiment, the experimental model
in the form of a family P(y, λ) of discrete probability distributions is viewed as a conditional
distribution of the random variable Y given the parameter value, say λ. After performing the
experiment, we have an observed value, say yobs, and we compute the conditional probability
density function of the parameter λ given yobs, obtaining a posterior conditional probability
distribution. But, of course, we need to choose a prior measure P(dλ). Suppose we have
a probability density function where P(dλ) = �(λ) dλ. The posterior probability density
function is then given by [8, 30] (see also the appendix at the end),

f (λ, yobs) = P(yobs, λ)�(λ)∫
P(yobs, λ′)�(λ′) dλ′ . (2.1)

A prototype classical example of the binomial distribution is the coin tossing experiment
mentioned above and given in the appendix. In that classical context, the posterior conditional
probability density function for the parameter p would be obtained according to (2.1).

An example of a Bayesian approach involving the binomial distribution in a quantum
context is given in [30]. A thought experiment is described involving a count of photons
which are passed though a polarizer, a pinhole and a calcite crystal, eventually triggering a
detector as (+) or (−). In that context, a posterior distribution is obtained via (2.1) for the
binomial parameter θ , the direction of the polarizer.

In [30], the family of probability distributions which we have called the stochastic model
for the experiment is designated as predictive. The conditional probability distribution for the
parameter that we have called Bayesian posterior is there designated as retrodictive.

3. A general setting for statistical distributions and coherent states

Let {X,µ} be a measure space. X could, for example, be the space of some statistical parameters
or a larger space containing such parameters. Consider the Hilbert space H = L2(X,µ)

and suppose that it contains a reproducing kernel subspace HK . This means that for any
orthonormal basis, {�k}Nk=0 of HK (where N could be finite or infinite) the following is true:

(1)
∑N

k=0 |�k(x)|2 < ∞, for almost all x ∈ X and in fact, it is possible to define the functions
�k(x) in a way so that this convergence condition holds everywhere.
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(2) The function

K(x, y) =
N∑

k=0

�k(x)�k(y) (3.1)

defines a reproducing kernel i.e., K(x, y) satisfies the properties,

K(x, y) = K(y, x), K(x, x) > 0, for all x ∈ X;
(3.2)∫

X

K(x, z)K(z, y) dµ(z) = K(x, y), for all x, y ∈ X.

It turns out that the kernel is independent of the orthonormal basis chosen to represent it.

For such a Hilbert space HK , we can define a set of vectors, |x〉, labeled by the points of
X in the manner:

|x〉 = N (x)−
1
2 K(., x) = N (x)−

1
2

N∑
k=0

�k(x)�k, N (x) = K(x, x) =
N∑

k=0

|�k(x)|2.

(3.3)

The normalization factor N (x) is chosen in order to ensure that 〈x|x〉 = 1. In view of (3.2),
these vectors are then immediately seen to satisfy the resolution of the identity,∫

X

|x〉〈x|N (x) dµ(x) = IHK
, (3.4)

This condition implies that the vectors |x〉 form an overcomplete set in HK , so that any vector
in it can be written as a linear combination, either as a sum of or an integral over these. Very
often such a set of vectors is associated with a unitary representation of some group, and are
constructed by letting the representation operators act on a fixed vector in HK . At other times
such vectors are obtained by exploiting analytic properties of vectors in HK . But at this point,
we prefer to adopt a more general point of view and to just focus on the reproducing kernel
Hilbert space structure. We shall call the vectors |x〉 (generalized) coherent states (see, for
example [4], for a detailed discussion).

It is possible to associate two types of probability distributions to the basis vectors in a
reproducing kernel Hilbert space. First, writing

P(n, x) = |�n(x)|2
N (x)

, n = 0, 1, 2, . . . , N, (3.5)

we see that
∑N

n=0 P(n, x) = 1. Thus, P(n, x) can be looked upon as a discrete probability
distribution with parameter x. For instance, it can be based upon some experimental setup
and then might be viewed as a stochastic model. Second, if X ⊂ R

m, and if dµ has a Radon–
Nikodym density with respect to the Lebesgue measure dx (on R

m), then the functions,

�n(x) = |�n(x)|2 dµ(x)

dx
= P(n, x)N (x)

dµ(x)

dx
, n = 0, 1, 2, . . . , N, (3.6)

define, for each n a continuous probability density on X, since
∫
X

�n(x) dx = 1. In the context
of Bayesian statistics, this could be thought of as a conditional probability density for x, given
n. If P(n, x) is a statistical distribution, corresponding to some physical situation, which
depends on the parameter x, the measure

dκ(x) = N (x) dµ(x) (3.7)

can be interpreted as a prior measure on the parameter space X and then the �n(x)

become the associated posterior distributions, in conformity with (2.1). In [17–19], a group
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theoretical argument, exploiting the invariant measure and coherent states related to a particular
representation of the group on a Hilbert space, was invoked to obtain the prior measure. Here
we see that the appearance of a discrete probability distribution P(n, x) and the continuous
probability distributions �n(x) in this dual relationship is embodied in the structure of the
coherent states |x〉, independently of any group action.

3.1. A generic example

As a particular example, of the above situation, which will be useful for the purposes of the
present paper, and which will turn out to have rich applications to statistical distributions
encountered in extensive physical contexts, we introduce a family of the so-called nonlinear
coherent states. These are built by taking an abstract, complex, separable Hilbert space H,
of dimension N (finite or infinte), choosing an orthonormal basis φk, k = 0, 1, 2, . . . , N , of it
and defining on it the vectors

|z〉 = N (|z|2)− 1
2

N∑
k=0

zk

[xk!]
1
2

φk, (3.8)

where z is a parameter drawn from some appropriate open subset of C and x1, x2, x3, . . .

is a conveniently chosen positive sequence of numbers for which we define the generalized
factorial, xk! = x1x2 . . . xk , with x0! = 1, by definition. The normalization factor in this case
is N (|z|2) = ∑N

k=0
|z|2k

xk ! and of course, 〈z|z〉 = 1. In order to ensure that these coherent states
form an overcomplete set of vectors in the Hilbert space H, one requires the resolution of the
identity, ∫

D
|z〉〈z|N (|z|2) dν(z, z) = IH, (3.9)

to hold, where IH is the identity operator on the Hilbert space H and D is an appropriate
domain of the complex plane (usually the open unit disc or an open annulus, but which could
also be the entire plane). It is not hard to see that the resolution of the identity (3.9) will hold if
the measure dν, which is usually of the type d	(r) dθ (for z = r eiθ ), is such that d	 is related
to the xk! through the following moment condition (see, for example, [33] for a discussion of
the moment problem):

xk!

2π
=

∫ √
L

0
r2k d	(r), k = 0, 1, 2, . . . , (3.10)

with L being the radius of convergence of the series
∑N

k=0
|z|2k

xk ! (considered as a series in

λ = |z|2). This means that once the sequence x1, x2, x3, . . . is specified, the measure d	 is to
be determined by solving the moment problem (3.10). There is an extensive literature on the
construction of coherent states of this type (see, for example, [11, 24, 25, 28]). On the other
hand, if the moment problem has no solution or, it has a solution but the corresponding measure
is not explicitly known, there exists an alternative constructive procedure which allows one to
build nonlinear coherent states, again resolving the identity [5].

We proceed now to analyze the discrete and continuous probability distributions, in the
sense of the previous section, associated with these coherent states.

3.2. Discrete distribution associated with |z〉
With λ = |z|2, define the discrete probability distribution P(n, λ), n = 0, 1, 2, . . . , N , by

P(n, λ) = λn

xn!
N (λ)−1. (3.11)
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The normalization condition 〈z|z〉 = 1 is seen to imply that
N∑

n=0

P(n, λ) = 1. (3.12)

In the special case, where xn = n, this distribution is just the well-known Poisson
distribution, for then xn! = n!, N(λ) = eλ and L = ∞. We shall see later that many of
the well-known discrete statistical distributions are related to nonlinear coherent states in this
manner. Note that if Y denotes the discrete random variable, Y (n) = xn, then taking x0 = 0,
we obtain its expectation value

〈Y 〉 =
N∑

n=0

xnP (n, λ) = λ. (3.13)

Thus for each λ we get a discrete probability distribution, which is some sort of a generalized
Poisson distribution. In general, the sort of distributions given by (3.11) is of the power series
type, well known in statistics (see, for example, [22]).

3.3. Continuous distributions associated with |z〉
We next note that in view of (3.10),

2π

∫ L

0
P(n, λ)N (λ) d	(λ) = 1, n = 0, 1, 2, . . . , N,

where we have written

d	(λ) = d	(r), r2 = λ. (3.14)

Thus, the functions,

�n(λ) = 2πP (n, λ)N (λ)
d	(λ)

dλ
= 2π

λn

xn!

d	(λ)

dλ
, n = 0, 1, 2, . . . , (3.15)

define, for each n, a continuous probability density over the parameter space 0 � λ � L. Here,
d	(λ)

dλ
denotes the Radon–Nikodym derivative of the measure d	 with respect to the Lebesgue

measure dλ, provided it exists. Clearly,∫ L

0
�n(λ) dλ = 1, n = 0, 1, 2, . . . . (3.16)

From (3.12) it follows that
N∑

n=0

�n(λ) = 2πN (λ)
d	(λ)

dλ
< ∞, (3.17)

for almost all λ ∈ [0, L]. Also, if � is the continuous random variable over the parameter
space [0, L], such that �(λ) = λ, then

〈�〉n =
∫ L

0
λ�n(λ) dλ = xn+1, (3.18)

which is a dual relation to (3.13).
Finally note, that in terms of the discrete and continuous probability distributions

themselves, the coherent states (3.8) may be written as

|z〉 =
N∑

n=0

[P(n, λ)]
1
2 e−inθφn

=
[

2πN (λ)
d	(λ)

dλ

]− 1
2

N∑
n=0

[�n(λ)]
1
2 e−inθφn, z =

√
λ e−iθ , (3.19)
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and which satisfy the resolution of the identity,∫ L

0

∫ 2π

0
|z〉〈z|N (λ) d	(λ) dθ = IH. (3.20)

Comparing (2.1) and (3.15) we see that the measure

dκ(λ) = 2πN (λ) d	(λ), (3.21)

gives a prior measure on the parameter space [0, L]. Furthermore, these results give us a hint as
to how one might construct coherent states starting from families of probability distributions.

We emphasize again that the duality appearing here, between the family of discrete
probability distributions, n �−→ P(n, λ), parametrized by λ, and the family of continuous
distributions λ �→ �n(λ), parametrized by n, is analogous to the Bayesian duality, that we
already referred to at the end of section 2.2, between a discrete probabilistic model P(n, λ) and
the continuous probability density function (see also the appendix to this paper), and which is
captured in the relation

f (λ, n) = P(n, λ)�(λ)∫ ∞
0 P(n, λ)�(λ) dλ

, (3.22)

where n represents an experimentally realized value of the discrete random variable and this
conditional density function (Bayesian posterior density function) is obtained using the prior
measure �(λ) dλ (see, for example, [6]).

It is interesting to note that the coherent states |z〉, which are unit vectors in the Hilbert
space H, may be thought of as being square roots of the discrete probability distribution
function n �→ P(n, λ), in the sense that ‖|z〉‖2 = ∑N

n=0 P(n, λ) = 1.
The probability distribution P(n, λ) can be extracted from the coherent state |z〉 by taking

the trace

P(n, λ) = Tr[|z〉〈z|Pn] = |〈φn|z〉|2, (3.23)

where Pn = |φn〉〈φn|. In a quantum-mechanical interpretation, this P(n, λ) is the probability
of measuring the physical quantity encoded by the state φn when the system under observation
had been prepared in the state |z〉.

3.4. Coherent states from discrete statistical distributions

Suppose now that we start with a discrete probability distribution, P(n, λ), where again
n = 0, 1, 2, . . . , N , with N being either finite or infinite and λ is a parameter drawn from the
interval [a, b] ⊂ [0,∞). Of course,

∑N
n=0 P(n, λ) = 1 and we further assume that P(n, λ)

satisfies the conditions:

(1) There exists a measure dκ on [a, b], absolutely continuous with respect to the Lebesgue
measure dλ and such that∫ b

a

P (n, λ) dκ(λ) := cn < ∞, n = 0, 1, 2, . . . , N. (3.24)

(2) For all λ ∈ [a, b],

N∑
n=0

P(n, λ)

cn

< ∞. (3.25)
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On the interval [a, b], let us define the functions

�n(λ) = 1

cn

P (n, λ)
dκ(λ)

dλ
, (3.26)

for which we note that∫ b

a

�n(λ) dλ = 1, n = 0, 1, 2, . . . , N, (3.27)

and using them we define on the open annulus,

D = {z =
√

λ e−iθ |a < λ < b, 0 � θ < 2π} ⊂ C, (3.28)

the functions

�n(z) = 1√
2π

[�n(λ)]
1
2 e−inθ . (3.29)

Note that the range of values of the index n need not be constrained to lie among the
non-negative integers only. It could also be a subset of Z or all of it.

It is worthwhile pointing out that the measure dκ postulated in (3.24) is not necessarily
unique, which leaves the possibility of there being several such measures which could be
acceptable. In the case of the discrete distributions arising from nonlinear coherent states,
the requirement of the resolution of the identity, i.e., the moment condition (3.10) fixes the
measure dκ . Also the functions (3.26) are exactly like the f (λ, n) in (3.22), appearing in the
duality studied in Bayesian statistics [6, 30] although, unlike in that case, we have here the
additional restriction (3.25).

Clearly, the functions {�n}Nn=0 form an orthonormal set,∫
D

�m(z)�n(z) dλ dθ = δmn. (3.30)

Let H denote the Hilbert subspace of L2(D, dλ dθ) generated by these functions. Since,
N∑

n=0

|�n(z)|2 = 1

2π

dκ(λ)

dλ

N∑
n=0

P(n, λ)

cn

< ∞, (3.31)

by virtue of (3.25), H is a reproducing kernel Hilbert space. From the discussion at the
beginning of this section (see (3.3)), we can then define coherent states in H as

|z〉 = [N (λ)]−
1
2

N∑
n=0

[
P(n, λ)

cn

] 1
2

e−inθ�n, N (λ) =
N∑

n=0

P(n, λ)

cn

, (3.32)

which now satisfy the resolution of the identity

1

2π

∫ b

a

∫ 2π

0
|z〉〈z|N (λ) dκ(λ) dθ = IH. (3.33)

Note that from (3.24) and (3.26), we get

�n(λ) = P(n, λ)�(λ)∫ b

a
P (n, λ)�(λ) dλ

, where �(λ) = dκ(λ)

dλ
, (3.34)

so that dκ can be thought of (see (3.22)) as a prior measure on the parameter space a < λ < b

and the �n as the associated Bayesian posteriors.
To make the connection with (3.3) and (3.4), we easily see that the coherent states (3.32)

can also be written as

|z〉 = Ñ (|z|2)− 1
2

∞∑
n=0

�n(z)�n, Ñ (|z|2) =
∞∑

n=0

|�n(z)|2, (3.35)

8
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and the resolution of the identity as

1

2π

∫ b

a

∫ 2π

0
|z〉〈z|Ñ (λ) dλ dθ = IH. (3.36)

3.5. Coherent states from continuous statistical distributions

We now proceed to construct analogous families of coherent states from sets of continuous
probability distributions. Suppose that �n(λ), n = 0, 1, 2, . . . , N , is a set of continuous
probability densities defined over the set I ⊂ R. Evidently, they satisfy∫

I

�n(λ) dλ = 1, n = 0, 1, 2, . . . , N.

We assume in addition that

Ñ (λ) := 1

2π

N∑
n=0

�n(λ) < ∞, λ ∈ I. (3.37)

Then, as before we construct the set of functions on X = I × [0, 2π),

�n(λ, θ) = 1√
2π

[�n(λ)]
1
2 e−inθ , n = 0, 1, 2, . . . N, (3.38)

and note that they form an orthonormal set in L2(X, dλ dθ). Let H be the Hilbert subspace of
L2(X, dλ dθ) generated by these vectors. Then once again, following (3.3) we construct the
coherent states in H,

|λ, θ〉 = Ñ (λ)−
1
2

N∑
n=0

�n(λ, θ)�n, (3.39)

with Ñ (λ) as in (3.37). These coherent states satisfy the resolution of the identity,∫
I

∫ 2π

0
|λ, θ〉〈λ, θ |Ñ (λ) dλ dθ = IH. (3.40)

Clearly, the discrete distribution function this time is

P(n, λ) = �n(λ)

Ñ (λ)
, (3.41)

with Ñ (λ) dλ the prior measure.

3.6. A quick recapitulation

In the preceding subsections we developed a correspondence between two apparently disparate
mathematical constructions originating in differing contexts. From the field of coherent states,
we have the duality of two types of probability distributions as described in section 3: on the
one hand, we have a discrete family of states indexed by some parameter(s), while on the other
hand, we have a continuous probability distribution over the parameter space provided by the
resolution of the identity associated with the coherent state family.

As described in the introduction, sections 1, 2 and the appendix, this duality is mirrored
by the Bayes method of statistical inference which takes place in an experimental context,
modeled by a parametric family of probability distributions. The duality here is between
the original stochastic model and a conditional probability distribution over the parameter
space, given observed results. Thus, the field of coherent states within a quantum physics
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context provides a method for performing statistical inference within a classical experimental
context. The Bayes method of inference pertains to classical probability distributions but
the method has been adopted for use in quantum experimental situations as, for example, in
[9, 23, 26, 32].

Examples relating to several commonly used discrete stochastic models are given in
section 4. From section 5, we see that inference in the case of mixture stochastic models
and multivariate models can also be constructed from the duality provided by vector coherent
states.

4. Some illustrative examples

In this section we construct coherent states for some standard statistical distributions, following
the general procedure outlined above. These coherent states have been obtained before, using
group theoretical arguments [17–19] and we shall indicate, in each case, the group theoretic
relevance of the coherent states. Moreover, in each case the interplay between the dual system
of discrete and continuous distributions, embodied in the coherent states will be explicitly
demonstrated.

4.1. Coherent states from the Poisson distribution

For the Poisson distribution, the probability of n successes, given that the average number of
successes is λ > 0, is

P(n, λ) = e−λλn

n!
and

∞∑
n=0

P(n, λ) = 1. (4.1)

Once again we would like to relate these to a family of coherent states. Also, thinking of λ

itself as a random variable, we would like to obtain a distribution function for it. We start by
introducing the complex variable, z = √

λ e−iθ , and since
∫ ∞

0 P(n, λ) dλ = 1 for all n, we
define the functions (see (3.29))

�n(z) = 1√
2π

[P(n, λ)]
1
2 e−inθ = 1√

2π

[
λn e−λ

n!

] 1
2

e−inθ , n = 0, 1, 2, . . . ,∞. (4.2)

These functions are clearly orthonormal with respect to the measure dλ dθ ,∫ ∞

0

∫ 2π

0
�m(z)�n(z) dλ dθ = δmn.

Let H ⊂ L2(C, dλ dθ) be the (infinite-dimensional separable) Hilbert space generated by
them. Next we see that conditions (3.24) and (3.25) are satisfied with dκ = dλ and cn = 1 for
all n. Thus, following (3.32) we may define coherent states on H as

|z〉 =
∞∑

n=0

√
P(n, λ) e−inθ�n = e− |z|2

2

∞∑
n=0

zn

√
n!

�n, (4.3)

so that

〈z|z〉 =
∞∑

n=0

P(n, λ) = 1.

Again, the coherent states |z〉, may be thought of as being square roots of the discrete Poisson
distribution, n �→ P(n, λ).

10
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These coherent states also satisfy a resolution of the identity,

1

2π

∫ ∞

0

∫ 2π

0
|z〉〈z|dλ dθ = IH. (4.4)

It is clear that this time the prior measure on the parameter space 0 � λ < ∞ is just the
uniform distribution dλ, with the Bayesian posteriors being given by �n(λ) = P(n, λ). The
coherent states (4.3) are the canonical coherent states, well known in the physical literature
(see, e.g., [4]). Moreover, these coherent states are associated with a unitary representation of
the Weyl–Heisenberg group and the prior measure dλ is also obtainable from the Haar measure
of this group [19].

Finally, it ought to be pointed out that the continuous distribution given by the function
�n(λ) = P(n, λ) is just a γ -distribution, for each n. In other words, the discrete Poisson
distribution and the continuous γ -distributions (which may now be thought of as being
conditional distributions for the average number of success λ, given n successes) are in duality
through the canonical coherent states. Moreover, had we started with the γ -distribution
functions, γn(λ) = λn−1 e−λ

�(n)
, defined �n = γn+1, n = 0, 1, 2, . . . ,∞ and followed through the

steps in section 3.5, we would have arrived at the same coherent states (4.3). In the field of
statistics, the gamma distribution is said to be a natural conjugate to the Poisson sampling
process [7].

4.2. Coherent states from the binomial distribution

Consider the binomial distribution for N independent trials, each having a probability of
success p and of failure q = 1 − p. The probability of getting n successes in these N trials is

P(n, p) =
(

N

n

)
pnqN−n = N !

(N − n)!n!
pnqN−n, n = 0, 1, 2, . . . , N, (4.5)

and of course
N∑

n=0

P(n, p) = (q + p)N = 1.

As before, we treat the parameter p itself also as a random variable and then use our general
construction in order to: (1) obtain coherent states representing this distribution and (2) find a
posterior distribution for p. This case has also been worked out in [18], using coherent states
of the rotation group and we shall indicate the connection to this approach in what follows.
Let us first introduce a new parameter λ, which will be more convenient for our purposes,

λ = p

q
�⇒ q = 1

1 + λ
and 0 � λ < ∞. (4.6)

Using this we introduce the complex variable z = √
λ e−iθ and note that in terms of λ, the

probability distribution (4.5) can be rewritten as

P(n, λ) = N !

(N − n)!n!
· λn

(1 + λ)N
= �(N + 1)

�(N − n + 1)�(n + 1)
· |z|2n

(1 + |z|2)N (4.7)

Since

(N + 1)

∫ ∞

0

λn

(1 + λ)N+2
dλ = (N + 1)

∫ 1

0
qN−n(1 − q)n dq = n!(N − n)!

N !
,

we take (see (3.24))

dκ = (N + 1)

(1 + λ)2
dλ, cn = 1. (4.8)

11
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Since N is finite, (3.25) is trivially satisfied. Thus, we take

�n(λ) = P(n, λ)
dκ(λ)

dλ
= (N + 1)!

(N − n)!n!
· λn

(1 + λ)N+2
(4.9)

and

�n(z) =
[

(N + 1)!

2π(N − n)!n!

] 1
2 zn

(1 + |z|2) N
2 +1

, z ∈ C, n = 0, 1, 2, . . . , N. (4.10)

Clearly, these vectors are orthonormal,∫ ∞

0

∫ 2π

0
�m(z)�n(z) dλ dθ = δmn

and we denote by H the (N + 1)-dimensional Hilbert space generated by these vectors. On
this space we then have the coherent states,

|z〉 =
√

P(n, λ) e−inθ�n = 1

(1 + |z|2) N
2

N∑
n=0

√
�(N + 1)zn

√
�(N − n + 1)�(n + 1)

�n. (4.11)

Note again, that since

〈z|z〉 = 1 =
N∑

n=0

P(n, λ),

for each λ = |z|2, the coherent state |z〉 is sort of a vectorial square root of the probability
distribution P(n, λ), n = 0, 1, 2, . . . , N . These coherent states satisfy the resolution of the
identity,

1

2π

∫ ∞

0

∫ 2π

0
|z〉〈z|dκ(λ) dθ = N + 1

2π

∫ ∞

0

∫ 2π

0
|z〉〈z| dλ dθ

(1 + λ)2
= IH. (4.12)

Next, introducing the new labels N = 2j, k = n − j , we write

|z〉 = (1 + |z|2)− N
2

j∑
k=−j

√
�(2j + 1)zk+j

√
�(j − k + 1)�(j + k + 1)

�k, (4.13)

which are immediately recognized as being the Gilmore–Perelomov–Radcliffe-type coherent
states [1, 4, 29, 31] for the (2j + 1)-representation of SU(2). Indeed, the vectors |z〉 may be
rewritten in terms of the SU(2) generators J±, J3 and the lowest basis vector �−j as

|z〉 = ezJ+ eηJ3 e−zJ−�−j = eξJ+−ξJ−ψ−j := D(ξ)�−j , (4.14)

where writing z = − tan ϑ
2 e−iγ ,

ξ = i
ϑ

2
eiγ and η = log(1 + |z|2) = 2 log sec

ϑ

2
.

Finally, note that by virtue of (4.7) and (4.9), the measure

dκ(λ) = N + 1

(1 + λ)2
dλ or equivalently, dκ(p) = (N + 1) dp (4.15)

gives in this case the prior measure (again uniform) of the parameter p over the interval [0, 1].
Once again, it is clear that had we started with the continuous distributions (4.9), which

are β-distributions of the first kind, and followed through with the procedure in section 3.5,
we would also have arrived at the coherent states (4.11). Thus, the continuous β-distributions
of the first kind and the discrete binomial distribution (statistical conjugate pair) are in duality
through the SU(2) coherent states.

12
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4.3. Coherent states from the negative binomial and β-distributions

The negative binomial and the β-distributions have a dual relationship through the coherent
states arising from the discrete series representations of the SU(1, 1) group. Recall that, for a
fixed integer m � 1, the negative binomial distribution is given by

P(m, n; λ) = �(m + n)

�(n + 1)�(m)
λm(1 − λ)n, n = 0, 1, 2, . . . ,∞, (4.16)

where the parameter λ lies in the interval (0, 1). The quantity P(m, n, λ) can be thought of
as being the probability that m + n is the number of independent trials that are necessary to
obtain the result of m successes (the (m + n)th trial being a success) when λ is the probability
of success in a single trial. The term negative binomial stems from the fact that

(1 − λ)−k =
∞∑

n=0

�(k + n)

�(n + 1)�(k)
λn,

from which it also follows that
∞∑

n=0

P(m, n; λ) = 1. (4.17)

The β-distribution is a continuous distribution, in the variable λ ∈ [0, 1], with discrete
parameters m, n = 1, 2, 3, . . . ,∞,

β(λ;m, n) = 1

B(m, n)
λm−1(1 − λ)n−1,

∫ 1

0
β(λ;m, n) dλ = 1, (4.18)

where

B(m, n) = �(m)�(n)

�(m + n)
=

∫ 1

0
tm−1(1 − t)n−1 dt.

We note that

β(λ;m + 1, n + 1) = P(m, n; λ)

cm,n

, with cm,n = m

(m + n + 1)(m + n)
, (4.19)

implying, by virtue of (4.18),∫ 1

0
P(m, n; λ) dλ = cm,n and dκ(λ) = dλ. (4.20)

Thus, (3.24) is satisfied, with cn = cm,n and (3.25) is also satisfied since
∞∑

n=0

P(m, n; λ)

cm,n

= m + 1

λ2

∞∑
n=0

P(m + 2, n; λ) = m + 1

λ2
< ∞ (4.21)

by virtue of (4.17).
Thus, for fixed m � 1 and n = 0, 1, 2, . . . ,∞, we define, using (3.26) and (4.19), the

continuous distributions,

�m,n(λ) = P(m, n; λ)

cm,n

dκ(λ)

dλ
= β(λ;m + 1, n + 1) = 1

B(m + 1, n + 1)
λm(1 − λ)n, (4.22)

and the associated functions in the complex variable ζ = √
λ e−inθ , 0 � λ < ∞, 0 � θ < 2π ,

�m,n(ζ ) = 1√
2π

[�m,n(λ)]
1
2 e−inθ ,

13
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which satisfy the orthonormality condition∫ ∞

0

∫ 2π

0
�m,n(ζ )�m,k(ζ ) dλ dθ = δnk.

Denoting by H the (infinite-dimensional separable) Hilbert space spanned by these vectors,
and noting that by (4.21),

N (λ) =
∞∑

n=0

P(m, n; λ)

cm,n

= m + 1

λ2
,

we define the coherent states associated with the discrete negative binomial and continuous
β-distributions, on this space using (3.32),

|ζ ;m〉 = N (λ)−
1
2

∞∑
n=0

[
P(m, n; λ)

cm,n

] 1
2

e−inθ�m,n

=
∞∑

n=0

[
�(m + n + 2)

�(m + 2)�(n + 1)

] 1
2

λ
m
2 +1(1 − λ)

n
2 e−inθ�m,n. (4.23)

These satisfy the resolution of the identity,

m + 1

2π

∫ 1

0

∫ 2π

0
|ζ,m〉〈ζ,m|dλ dθ

λ2
= IH. (4.24)

while from (3.22), (4.20) and (4.22) we obtain the prior measure on the parameter space [0, 1],

dκ(λ) = dλ. (4.25)

Note that this measure is different from the one obtained in [17], which was derived using
a group theoretical argument. However, in the present case, m = 1, 2, 3, . . ., while in
[17] the value m = 1 was excluded. The associated Bayesian posteriors this time are the
�m,n, n = 0, 1, 2, . . . ,∞.

Once again it is clear that if we start with the continuous β-distributions (4.18), and
construct coherent states following section 3.5, with �n(λ) = β(λ;m + 1, n + 1), we arrive at
these same coherent states.

To make contact with the coherent states of the SU(1, 1) group let us introduce the new
complex variable z = (1 − |ζ |2) 1

2 e−iθ = (1 − λ)
1
2 e−iθ and write m + 2 = 2j . Then in terms

of this variable we get the coherent states

|z; j 〉 = (1 − |z|2)j
∞∑

n=0

[
�(2j + n)

�(2j)�(n + 1)

] 1
2

zn�2j,n, j = 3

2
, 2,

5

2
, . . . . (4.26)

These are the Gilmore–Perelomov-type coherent states arising from the discrete series
representations [4, 17, 29] of SU(1, 1). Since we are assuming that m � 1, the representation
corresponding to j = 1 does not appear here. We observe that in the mathematical literature,
these coherent states are usually written without the factor of (1 − |z|2)j appearing before
the sum on the right-hand side of (4.26). This is because, unlike in our case, the Hilbert
space for the discrete series representations of SU(1, 1) is taken to be the one consisting of all
holomorphic functions on the open unit disc of C, which are square integrable with respect to
the measure (2j−1)

π
(1 − |z|2)2j−2 dx dy, where z = x + iy, and the factor is absorbed into the

measure.
Note finally, that all three examples discussed here lead to coherent states of the nonlinear

type (see (3.8)). To summarize, we have seen that the canonical coherent states combine
in duality the continuous γ -distributions with the Poisson distribution, the coherent states of

14
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the SU(2) group so combine the continuous β-distributions of the first kind with the discrete
binomial distribution and the coherent states obtained from the discrete series representations
of the SU(1, 1) group combine in duality the continuous β-distributions with the discrete
negative binomial distribution.

5. Vector and multidimensional coherent states from probability distributions

So far we have considered only single discrete probability distributions and constructed
coherent states from them. We now look at a situation where several independently distributed
random variables are at play. It will turn out that the appropriate type of coherent states to
associate with such situations are vector coherent states (VCS) of the type discussed in [3, 34]
or multidimensional coherent states of the type studied in [27].

Let us take a discrete probability distribution P(n, λ), n = 0, 1, 2, . . . , N (finite or
infinte). This is the probability distribution of the discrete random variable N such that
N(n) = n and assume that it is of the type (3.11), i.e., the associated coherent states are of the
nonlinear type. Assume now that we have M such independent, random variables, distributed
with parameters λ1, λ2, . . . , λM , respectively, each drawn from the interval [0, L]. Then

P(λ1, λ2, . . . , λM; n) = 1

M

M∑
i=1

P(n, λi) (5.1)

is the probability of n ‘successes’ coming from any one of these processes when we are
indifferent to which one it comes from. We now ask if there is a natural set of coherent states
that could incorporate such a system of distributions, along the lines of what we saw earlier.
It will turn out that a Hilbert space over a matrix domain, consisting of normal matrices, will
be appropriate for the construction of such coherent sates. Recall that a normal matrix Z is
defined by the condition Z∗Z = ZZ∗ and if Z is an M × M matrix, it can be diagonalized by
means of a unitary matrix, i.e.,

Z = U diag[z1, z2, . . . , zM ]U ∗ (5.2)

where U ∈ U(M) and the elements zi, i = 1, 2, 3, . . . ,M , of the diagonal matrix are
complex numbers. Writing zi = √

λi e−iθi , let � denote the set of all such matrices for which
0 � λi < L, i = 1, 2, 3, . . . ,M . We next define the matrix valued functions on the domain
�,

Φn(Z) = Zn

√
xn!

, n = 0, 1, 2, . . . , N, (5.3)

and on � we define the measure

d�(Z,Z∗) = dU

M∏
i=1

d	(λi) dθi,

∫
�

d�(Z,Z∗) = 1, (5.4)

where dU is the (normalized) invariant measure of U(M) and d	 is the measure introduced
into (3.10) and (3.14).

It then follows that the functions Φn satisfy the matrix orthogonality condition∫
�

Φm(Z)Φn(Z)∗d�(Z,Z∗) = IMδmn, (5.5)

where IM is the M ×M identity matrix. Let {χi}Mi=1 be an orthonormal basis of C
M and define

the C
M -valued functions,

Φi
n(Z

∗) = Φn(Z
∗)χi. (5.6)
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Note that

Tr[ZZ∗] =
M∑
i=1

|zi |2.

Also, the series,
N∑

n=0

Tr[Φn(Z)∗Φn(Z)] =
N∑

n=0

M∑
i=1

Φi
n(Z)†Φi

n(Z) =
N∑

n=0

M∑
i=1

λn
i

xn!
(5.7)

converges for all λi ∈ [0, L), which following the discussion at the beginning of section 3, is
the condition for building reproducing kernel Hilbert spaces, which we now proceed to do.

Consider the Hilbert space H̃ = L2
C

M (�, d�) of square integrable, M-component vector-
valued functions on �. The vectors Φi

k, i = 1, 2, . . . ,M, k = 0, 1, 2, . . . , N are elements of
this Hilbert space and in fact, by virtue of (5.5), they form an orthonormal set in it,〈

Φi
m

∣∣Φj
n

〉 =
∫

�

Φi
m(Z)†Φj

n(Z) d�(Z,Z∗) = δmnδij .

Denote by HK the Hilbert subspace of H̃ generated by this set of vectors. Then, in view of the
convergence of the series in (5.7),∑

i,k

‖Φi
k(Z

∗)‖2 < ∞, ∀Z∗ ∈ �.

Thus, HK is a reproducing kernel Hilbert space of analytic functions in the variable Z∗, with
matrix-valued kernel K : � × � �−→ C

M×M , given by (see (3.1))

K(Z∗′,Z) =
∑
i,k

Φi
k(Z

′)Φi
k(Z

∗)† =
∑
i,k

Z∗′kχiχi†Zk

xk!

=
∑

k

Z∗′kZk

xk!
. (5.8)

When M = 1,Z = z,� = C and xk! = k!, we get the well-known Bargmann kernel

K(z′, z) = ez′z,

and HK is the Hilbert space of entire analytic functions in the variable z. This is the kernel
associated with the canonical coherent states (4.3).

The vector coherent states associated with the reproducing kernel K are (see (3.3)) the
vectors |Z; i〉 ∈ HK ,

|Z; i〉(Z∗′) = N (Z∗,Z)−
1
2 K(Z∗′,Z)χi, N (Z∗,Z) = K(Z,Z∗)

M
(5.9)

defined for each Z ∈ � and i = 1, 2, . . . ,M . Note that since K(Z∗,Z) is a strictly positive-
definite matrix,

K(Z∗,Z) = U diag[N (λ1),N (λ2), . . . ,N (λM)]U ∗, (5.10)

where for each i,N (λi) = ∑N
k=0 = λk

i

xk ! is the same normalization factor as in (3.8), the
negative square root makes sense. The vector coherent states (5.9) satisfy the resolution of the
identity (compare with (3.20)),

M∑
i=1

∫
�

|Z; i〉〈Z; i|N (Z∗,Z) d�(Z,Z∗) = IK, (5.11)
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and the normalization condition
M∑
i=1

〈Z; i|Z; i〉 = 1. (5.12)

The kernel K has the matrix elements

K(Z∗′,Z)ij = χi†K(Z∗′,Z)χj .

But also, in view of (5.5),

〈Z′; i|K(Z∗,Z)|Z; j 〉 =
∫

�

χi†K(Z∗′,X)∗K(X∗,Z)χj d�(X,X∗)

= χi†K(Z∗′,Z)χj = K(Z∗′,Z)ij . (5.13)

Using (5.8) the VCS can alternatively written as

|Z; i〉(Z∗′) = N (Z∗,Z)−
1
2

∑
k

Z∗′kZkχi

xk!
= N (Z∗,Z)−

1
2

∑
j,k

Z∗′kχj

√
xk!

· χj†Zkχi

√
xk!

,

so that

|Z; i〉 = N (Z∗,Z)−
1
2

M∑
j=1

N∑
k=0

Φj

k

χj†Zkχi

√
xk!

. (5.14)

Let H be an N-dimensional (complex, separable) Hilbert space and let {φk}Nk=0 be an
orthonormal basis for it. Then the vectors χi ⊗φk, i = 1, 2, . . . ,M, k = 0, 1, 2, . . . , N , form
an orthonormal basis of C

M ⊗ H. We make a unitary transformation, V : HK −→ C
M ⊗ H,

by the basis change Φi
k �−→ χi ⊗ φk . Under this map, the VCS |Z; i〉 transform to the vectors

|Z, i 〉̃ := V |Z, i〉 = N (Z∗,Z)−
1
2

M∑
j=1

N∑
k=0

χj ⊗ φk

χj†Zkχi

√
xk!

= N (Z∗,Z)−
1
2

N∑
k=0

Zkχi

√
xk!

⊗ φk ∈ C
M ⊗ H, (5.15)

which are exactly the VCS defined (over matrix domains) in [3]. Also, in this form the VCS
resemble the nonlinear coherent states (3.8) more closely. The inverse of the map V is then
easily seen to be given by

(V −1Φ)(Z∗) =
M∑
i=1

〈Z, i|Φ〉χi, Φ ∈ C
M ⊗ H. (5.16)

To return to the discussion of the probability distribution P(λ1, λ2, . . . , λM; n) in (5.1),
we first rewrite the VCS (5.15) explicitly in matrix form as

|Z, i 〉̃

= 1√
M

N∑
k=0

U

⎛⎜⎜⎜⎜⎜⎝

√
P(k, λ1) e−ikθ1 0 . . . 0

0
√

P(k, λ2) e−ikθ2 . . . 0

...
...

. . .
...

0 0 . . .
√

P(k, λM) e−ikθM

⎞⎟⎟⎟⎟⎟⎠ U ∗χi ⊗ φk.

(5.17)
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Again, let Pn = |φn〉〈φn| and define

P(Z,Z∗; n) = TrH

[
M∑
i=1

|Z, i 〉̃ 〈̃Z, i|IM ⊗ Pn

]
, (5.18)

where TrH denotes a partial trace in H. Clearly, P(Z,Z∗; n) is an M × M matrix and it is not
hard to see that

P(Z,Z∗; n) = 1

M
U

⎛⎜⎜⎜⎝
P(n, λ1) 0 . . . 0

0 P(n, λ2) . . . 0
...

...
. . .

...

0 0 . . . P (n, λM)

⎞⎟⎟⎟⎠ U ∗. (5.19)

Now taking the trace in C
M we immediately see that

Tr
C

M [P(Z,Z∗; n)] = Tr
C

M⊗H

[
M∑
i=i

|Z, i 〉̃ 〈̃Z, i|IM ⊗ Pn

]
= P(λ1, λ2, . . . , λM; n), (5.20)

which should be compared with (3.23). Finally, the determinant

det [MP(Z,Z∗; n)] = P(n, λ1)P (n, λ2) . . . P (n, λM) (5.21)

denotes the joint probability of getting n ‘successes’ from each distribution.
Before leaving this topic of matrix-valued distributions, let us point out that more general

situations than envisaged by (5.1) can also be treated using similar techniques. For example,
instead of attaching the same weight, 1

M
, to each component P(n, λi) of the mixture, we could

also attach different weights µi to them (with µi > 0 for all i and
∑M

i=1 µi = 1). Examples
of this type will be dealt with in a future publication, where we shall also allow the possibility
of M being infinite.

To treat general joint probabilities of the type,

P(n1, λ1; n2, λ2; . . . ; nM, λM) = P(n1, λ1)P (n2, λ2) . . . P (nM, λM), (5.22)

it is necessary to go to multidimensional coherent states. We intend to treat this in greater
detail in a future publication, but here we briefly indicate the main idea. Consider again
a discrete distribution P(n, λ) of the type (3.11), i.e., such that it has associated coherent
states of the type (3.19). These coherent states |z〉 are defined on a Hilbert space H. Let
HM = H ⊗ H ⊗ . . . ⊗ H be the M-fold tensor product of H with itself. On HM we define the
vectors,

|z1, z2, . . . , zM〉 = |z1〉|z2〉 . . . |zM〉

=
N∑

n1=0,n2=0,...,nM=0

[P(n1, λ1; n2, λ2; . . . ; nM, λM)]
1
2

× e−i(n1θ1+n2θ2+...+nMθM)φn1,n2,...,nM
, (5.23)

where the vectors

φn1,n2,...,nM
= φn1 ⊗ φn2 ⊗ . . . ⊗ φnM

, 0 � n1, n2, . . . , nM � N,

form an orthonormal basis for HM . We call the vectors (5.23) multidimensional coherent
states Such coherent states have been studied in different contexts before (see, for example,
[27]). These vectors are normalized,

〈z1, z2, . . . , zM |z1, z2, . . . , zM〉 = 1,
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and they satisfy the resolution of the identity (compare with (3.20)),∫
DM

|z1, z2, . . . , zM〉〈z1, z2, . . . , zM |
M∏
i=1

N (λi) d	(λi) dθi = IHM ,

where DM = D ×D × . . . ×D is the M-fold Cartesian product of the domain D = {√λ eiθ ∈
C|λ ∈ [0, L), θ ∈ [0, 2π)} over which the coherent states |z〉 in (3.19) are defined.

Once again these coherent states appear as ‘generalized square-roots’ of the joint
probability distribution P(n1, λ1; n2, λ2; . . . ; nM, λM), 0 � n1, n2, . . . nM � N , and just
as in (3.23),

P(n1, λ1; n2, λ2; . . . ; nM, λM) = Tr[|z1, z2, . . . , zM〉〈z1, z2, . . . , zM |Pn1,n2,...,nM
]

= |〈φn1,n2,...nM
|z1, z2, . . . , zM〉|2, (5.24)

with

Pn1,n2,...,nM
= |φn1,n2,...,nM

〉〈φn1,n2,...,nM
|.

Recently (see [10]), this formalism has been applied to the construction of vector coherent
states for the quantum motion of a particle in an infinite square well, enabling one to define in
an unambiguous way the momentum operator. The construction in [10] is based on Gaussian
probability distributions but it can be carried out using a large class of distributions.

6. Conclusion

As mentioned in the introduction, the relationship between coherent states and statistical
distributions has been studied before. We have tried to demonstrate here the deeper
connection between such distributions, both continuous and discrete, and reproducing
kernel Hilbert spaces, in so far as the latter are the carriers of generalized coherent states.
Moreover, taking this point of view, it has been possible to connect vector coherent states to
mixtures of probability distributions and multi-dimensional coherent states to joint probability
distributions. The posterior distribution, appearing on the parameter space of a discrete
distribution, is clearly seen to be a consequence of the resolution of the identity satisfied by
the coherent states. Again this has been noted earlier, but here we are able to put it in a more
general context.

While we do have in mind possible implications to quantum physics of the connection
between Bayesian duality and coherent states, we defer a detailed discussion of that point
to a future publication. The specific examples, chosen for the sake of illustration in
section 4, were dictated by the fact that they involve, in a sense, the most commonly used
statistical distributions as well as the most important coherent states from a physical point
of view. However, the one intriguing question that arises from the general discussion is
the following: as has been demonstrated, a discrete statistical distribution, or a family of
discretely parametrized continuous distributions, satisfying certain technical conditions, lead
to the existence of coherent states on an associated Hilbert space. These coherent states, in
turn, can be shown to lead to quantum probabilities, embodied in a positive operator valued
measure, on the parameter space. The nature of classical (commutative) and quantum (non-
commutative) probability are intrinsically different, yet it seems to be possible to make a
smooth transition from one to the other. This is reminiscent of the process of quantization, i.e.,
the passage from a classical-mechanical system to its quantum counterpart, and in particular,
coherent state quantization (see, for example, [2] for a review of the theory of quantization and
[10, 13–16] for a series of examples). So one might ask the question as to whether the procedure
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described above could be considered as constituting a quantization of the underlying classical
probability theory. In this connection, it would also be interesting to study more closely
the duality appearing between the discrete and continuous distributions incorporated in the
coherent states and the analogous duality familiar from Bayesian statistics.
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Appendix. Some elements of Bayesian inference

In this appendix, we put together some notions from Bayesian statistical inference that have
been used in this paper. Some relevant references are [6, 9, 20, 21, 23, 26, 30, 32]

A.1. Event space background

The context is the setup and subsequent performance of an experiment where there is a
random component to the results and where the set U of possible results is known. In the
field of statistics, the experiment is called a ‘random experiment’. Events are identified with
measurable subsets of U. That is, we say that event E has occurred if the observed result
uobs is in the subset E. One ‘experiment’, of course, could be an amalgam of a whole set of
sub-experiments, sometimes called ‘trials’.

A.2. Classical conditional probabilities

Let P(E|B) designate the classical conditional probability that event E occurs given that event
B has occurred. Then

P(E|B) = P(E ∩ B)

P (B)
,

where the numerator stands for the joint probability of occurrence of events E and B
and the denominator is the unconditional probability of occurrence of event B (to ensure
normalization). Consider the conditional probability the other way around P(B|E),

P(B|E) = P(E ∩ B)

P (E)
.

Suppose that we do not know the joint probability and in fact we only know the first conditional
probability P(E|B) and the two unconditional probabilities, then we can write

P(B|E) = P(E|B)P (B)

P (E)
.

The probability P(B|E) is called the posterior conditional probability for B given E and
P(B) is called the prior probability of B. Sometimes we compute several of these posterior
probabilities in the cases where the set of events {B1, B2, . . . , Bn} is a partition of U and the
events Bi are in the nature of possible causal hypotheses for the subsequent occurrence of
event E. Suppose that we know the conditional probabilities P(E|Bi) and the unconditional
(prior) probabilities P(Bi) for each Bi . Then one chooses a likely hypothesis by computing
each of the posterior probabilities.

Quantum analogues are given, for example, in [9, 23, 26, 32].

20



J. Phys. A: Math. Theor. 41 (2008) 365302 S Twareque Ali et al

A.3. The case of a continuous family of discrete probability distributions

Consider the performance of a classical experiment in which the outcome has a random
component within the following context. Let n = 0, 1, 2, . . . , N index the (discrete) set of
possible outcomes of the experiment, where N is a positive integer or ∞. For real parameter
λ ∈ �, let P(n, λ) be a family of classical discrete probability distributions indexed by λ,
which serves as a stochastic model for the experiment. We suppose that λ is unknown and
the object of the experiment is to obtain data with which to infer a probability distribution on
the parameter space �. After the performance of the experiment, let k indicate the observed
outcome. Then construct a conditional probability density function f for λ, given k, in the
form

f (λ, k) = P(k, λ)�(λ)∫
�

P (k, λ′)�(λ′) dλ′ ,

where �(λ) is an unconditional probability measure on the parameter space �, arbitrary,
subject to the integrability of the denominator. The measure � is called the prior measure
on � and the conditional probability density function f is called the density function of the
posterior probability distribution on �.

Example. Toss a coin N times observing n, the number of occurrences of heads. Let the
parameter p be the probability of obtaining heads on one toss. Supposing that p is unknown,
the object is to use the outcome of the experiment to obtain a probability distribution on the
parameter space (0, 1). The stochastic model is the binomial family,

P(n, p) = N !

(N − n)!n!
pn(1 − p)(N−n), for n = 0, 1, 2, . . . , N,

where N is a positive integer. After the performance of the experiment, having obtained k
heads, with choice of prior measure �(p), the posterior distribution on (0, 1) is given by the
conditional probability density function,

f (p, k) = pk(1 − p)(N−k)�(p)∫ 1
0 p′k(1 − p′)(N−k)�(p′) dp′

.
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